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FOREWORD

The purpose of this report is to present the results of a theoretical and experimental
analysis of a section of tapered coaxial waveguide, whose characteristic impedance is a
cosinusoidal function of the axial coordinate. The feasibility of exploiting the proposed
distribution in microwave impedance transformer is considered and mathematically con-
firmed. The theoretically predicted performance of such a transformer is compared with
the test results of the experimental design with favorable results.

The theoretical phase of this effort was initially supported by Project 8505 and the
engineering development phase was finally supported by Project 5578. The author is
singularly indebted to Dr. Gorden Kent of Syracuse University for his encouraging counsel
and helpful suggestions during the course of this investigation. Sincere appreciation for
the timely and stimulating discussions on the various aspects of the theory goes to
Mr. Haywood Webb, 8505 Project Engineer. Special thanks are due to co-workers
Mr. Edward J. Calucci and Mr. Robert L. Dondero for time and talent freely given during
the actual experimentation. Mr. John Altieri is also gratefully acknowledged for his par-
ticipation in the design of various ancillary equipment.

This report was originally submitted by the author in partial fulfillment of the require-
ments for the degree of Master of Electrical Engineering at Syracuse University.



ABSTRACT

A nonuniform section of coaxial transmission line is investigated as an impedance
matching network. Assuming that the purity of the dominant transverse electromagnetic

(TEM) mode is maintained, the coaxial transformer section proposed is one in which the
distributed series inductance and shunt capacitance are prescribed mathematical functions
of the axial cylindrical coordinate, that is, the direction of propagation. These variations
are expressed as a variable characteristic impedance in the explicit form of a half-period
cosinusoidal distribution.

Starting with the appropriate differential equations for the nonuniform line voltages
and currents, the basic Riccati-type differential equation governing the reflection coeffi-
cient in a nonuniform section is presented. In a conventional manner, an expression is
then developed for the complex reflection coefficient at the input reference plane when
the output port is terminated in a matched load. For given ranges in design parameters
the magnitude of this integral expression is evaluated for this specific taper-cosinusoidal.

The integration was performed on a Burrough's Datatron 205 computer using a Gaussian
quadrature technique. From predicted performances, it appears that the cosinusoidal dis-
tribution offers "significant" improvement over conventional tapers, that is, linear, expo-
nential, hyperbolic tangent, and Bessel. The apparent improvement is in terms of more
effective matching over increased bandwidths.

The network itself is realized by machine tapering the inner conductor of a coaxial
line in the mathematically prescribed manner within ±0.5 mil accuracy. The experimental
unit is designed to corroborate the predicted performance for an arbitrarily chosen mis-
match of 0.50 voltage (unmatched) reflection coefficient. A measurement procedure is
presented and the results discussed in terms of experimental measurement accuracies,
approximate theory, and over-all compatibility between theory and experiment.
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A NONUNIFORMLY DISTRIBUTED PARAMETER

MATCHING NETWORK FOR THE MICROWAVE FREQUENCIES

I. INTRODUCTION

The advent of precision microwave radar during the late 1930's and early 1940's
brought to the radio engineering community stringent requirements on transmitter and re-
ceiver efficiencies. In particular, there arose a demand for extremely well-matched micro-
wave components, not only at the design frequencies, but over the large bandwidths dic-
tated by the pulse ranging technique. One of the early methods of realizing such broadband
impedance matches involved the use of sections of line with gradually changing cross
sectional dimensions. This technique of tapered transitions remains quite popular even
today. The tapered section of line is essentially a nonuniformly distributed parameter

circuit whose series impedance per unit length and shunt admittance per unit length are
both continuous functions of the axial coordinate. This variable, together with the appro-

priate time dependency, constitutes the independent variables that appear in the trans-
mission line wave equations. For the nonuniform case, the wave equations are similar to
the uniform case except that the coefficients of the partial derivatives are functions of
the independent variable which specifies the direction of propagation.

The analysis of nonuniform transmission lines has been a subject of interest for a
considerable period of time, not only to the microwave engineer but to others. For example,
the wave equations for the dominant mode on a nonuniformly distributed coaxial line can be
separated in the field variables, becoming similar in format to the one dimensional

Schroedinger Wave Equations of Quantum Theory. Furthermore, the design of acoustic
absorbers for sonar camouflage may use a nonuniform distribution of appropriate media.

The analogous radar problem also may use a nonuniform lossy medium for aircraft camou-
flage. Consequently, in keeping with goals for an RADC project, which is aimed at con-
tinually improving the performance of microwave components, a study of impedance
matching was undertaken. In particular, the use of sections with continuously varying

dimensions to achieve the requisite reflectionless junction was heavily emphasized.
As a result of this study, there evolved one particular distribution which offers con-

siderable improvement in over-all transformer performance compared to "conventional"
tapers. It is one in which the distributed immitances are such that the characteristic

impedance is a cosinusoidal function of the direction of propagation of a microwave coaxial
line. This report treats the theoretical and experimental analysis of such a nonuniform

transnmssion line when used as an impedance transformer to match two uniform lossless
transmission lines with real and different characteristic impedances.

From the theoretical results and the corroborating experimental data, it is evident
that the cosinusoidal transformer represents a significant improvement in the state of the
art. In particular, for those applications it, aerospace electronics demanding the maxi-
mum in transformer bandwidth in a minimum physical length, the cosinusoidal design
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would appear very attractive. Consider, for example, a telemetry problem in which an un-
manned orbiting data acquisition satellite is interrogated by an earth station or a manned

space vehicle. Upon command, this satellite is to begin the transmission of the various
data stored in its memory. The transmitting antenna for this purpose may require an im-

pedance matching network for efficient coupling to the transmission line in the data ac-
quisition satellite. The information capacity will determine the required bandwidth and,
in all likelihood, will require as large a bandwidth as possible. Thus, because of the
large information capacities involved and the obvious volume limitations, a transformer

with maximum bandwidth and minimum length is indicated. The cosinusoidal design offers

one possible solution to this problem.

II. THE NONUNIFORM LINE EQUATIONS
Consider an infinite, transmission line with a distributed series impedance and a dis-

tributed shunt admittance, both of which are arbitrary functions of the longitudinal dimen-

sion. Assume that the propagating electromagnetic mode is the dominant configuration
and, as such, the electric and magnetic fields are pure transverse (TEM). Proceeding in

the classical manner', 2 3 it is possible to show that the steady state voltage and current
on such a transmission line satisfy the differential equations:

dV = ZI, (1)dx

dl y V, (2)T_

where V is the voltage across the line,
I is the current in the line,

Z is the series impedance per unit length,

Y is the shunt admittance per unit length,

and all these parameters are functions of the propagation dimension x with the sinusoidal

time variations in voltage and current being omitted for simplicity (total derivatives rather
than partial). Elimination of one of the two dependent variables from equations (1) and
(2) follows simply by differentiation of either equation and successive substitution. Thus,
for example, from equation (1):

d2V -(Z dl + Z
dx 2  x TX--

and, upon substitution of equations (1) and (2),

d2-V= yZV + ( 1, dZ),
dx 2  Z dx dx

or
d2 V YZV - - (n Z)(3)
2x 
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Similarly, the elimination of the voltage variable results in:

d21 YZI- __d (in Y) d = . (4)
dx 2  dx dT

Equations (3) and (4) represent the essence of the general problem in nonuniform trans-

mission line theory. In the general analysis problem, the series impedance and shunt

admittance are specified functions, Z(x) and Y(x), respectively, each being everywhere

differentiable and containing no singularities at the origin. The problem, then, is to effect

a solution of equations (3) and (4) subject to the above immittance restrictions and what-

ever boundary or end conditions may be present. For example, in the classical theory of

transmission lines, the immittance distributions are simply constants and independent of

x. In that case, three kinds of constants are of usual interest: pure real for absorbing

lines in which Z = R and Y = G, complex for lossy propagating lines in which Z = R + IX
and Y = G + jB, and pure imaginery for lossless propagating lines in which Z = jX and

Y = jB. For these three specialized cases, equations (1) and (2) become the well-known

differential equations of classical line theory sometimes referred to as the Telegraphers'

Equations.

Returning to the general case when Z(x) and Y(x) are arbitrary functions, the differ-
ential equations of the line are second order, linear equations with coefficients that are

functions of the independent variable x. Except for some special cases yielding infinite

series solutions in well-known, tabulated functions, these differential equations do not

admit explicit solutions in closed form. Aside from the analytic arguments essential to

the existence (of solutions) theorems, one must resort to numerical or graphical methods

to extract practical engineering results.

Some of the special cases are those in which the impedance and admittance distributions
are such that equations (3) and (4) become recognizable differential equations of mathemat-

ical physics. For example, in the so-called "exponential line," 4,5

Z- e- a x , Y,, e+ax,

resulting in second order equations with constant coefficients which permit exponential
solutions in voltage and current. In the so-called "Bessel line," 6 both Z and Y are power
functions of the independent variables resulting in various forms of Bessel's differential

equation which permit a series solution for voltage and current in terms of Bessel functions.

Some of the other distributions that fall into the above category and, as such, have

been studied in some detaii are linear 7 and parabolic. 8 In all these cases, there is con-
fusion concerning the authors' nomenclature for the particular line studied. Some, 7 ,8 for

example, identify the line by the explicit functional form that the appropriate characteris-

tic impedance,

_Zo = \Z _/Y t~Z~ZV- ,

obeys. Others 4 choose to classify the line by the functional form exhibited by the dis-
tributed immittances themselves. At any rate, the solutions of the general Telegraphers'

equations of (1) and (2) are difficult to obtain and usually cannot be handled by analytic
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methods forcing recourse to numerical techniques.
Proceeding, then, with the analysis of the problem at hand, it is required to place in

emphasis the line characteristics rather than the line voltages and currents that appear
in equations (3) and (4). Pierce 9 shows that it is possible to describe the nonuniform
transmission line by a first order nonlinear differential equation in impedances only.
Walker and Wax 10 followed the same procedure and introduced further a transformation

process to determine the resonance behavior of a nonuniform transmission line. Following

the procedure of Pierce, the impedance may be expressed as:

0 j= Y -- Z 2 ), (5)

where: ?0 (y) is the characteristic (or intrinsic) transmission line impedance,

Z(y) is the impedance variation on the line, and

y(y) is the propagation constant,

with the independent variable y measured from the receiving end. For the purposes of

this report, let us locate the origin at the sending end by setting y = L-x where L is the

physical length of the line. Upon substitution:

_L= y (Z 2 
- 2). (6)

Following the usual convention 9,10,11,12, these transformations are introduced:

p(X) = Z(x)-Z 0 (X) = 1 + p(x)
7(X)+Fo(X ,  - P(,)

where p(x) is the reflection coefficient. Upon substitution in equation (6), there results

the basic differential equation governing the reflection coefficient:

(1-p 2) ddd-- -2yp + U.- (In i o) =f 0. (7)

This expression is a first order nonlinear differential equation with variable coeffi-
cients known as "Riccati's Equation." As it stands, the equation is exact, the only

assumption underlying its derivation being the requirement for the existence of the TEM

mode. With this expression it is possible, at least in principle, to determine the reflec-

tion coefficient anywhere on the nonuniform transmission line once the distributed series

impedance function and distributed shunt admittance function are specified (using

Y = \V'7, 7=V7Y ).
In the problem of matching the characteristic impedances of two uniform transmission

lines with a section of nonuniform transmission line (taper), it is obvious that the transformer
must satisfy the paramount design criterion - the insertion mismatch due to the nonuniform

section be as small as possible. As such, it is reasonable to assume that the reflection

coefficient will be much smaller than unity everywhere in the nonuniform line. Thus, if
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Ip(x)l 2< < 1, then equation (7) becomes:

d _ 2 yp + _L d (In ;0) = 0. (8)

The equation is now linearized and a solution easily available. The details of the solu-

tion are given in the appendix with the following results:

p(x) = p(L) exp [- 2 fy(6 dM +

(9)_ (L t
1 exp [2 fy ( d6 If d-[ln -o(t)] exp [-2 f() do dt.
2 x to

Although this appears as a formidable practical solution, it lends itself to further
simplification. Let us consider x0 as the origin of the coordinate system and assume
that the nominal propagation constant is pure imaginary and not a function of the indepen-
dent variable x. The latter assumption essentially means a lossless, nondispersive trans-

mission line thus excluding tapered dielectric media, hollow wave guides, etc. Thus, if

x0 = 0 (to = 0) and y(x) = jB, then equation (9) becomes:

p ) --- p(L) e j2 (x-L) + 1 i216x - [In -o(to) e-j2 t ct.

Now, if in addition, the line is assumed perfectly matched at the receiving end, p(L) = 0,
the reflection coefficient at the sending end p(O) is simply:

P(0) = 1 f± [In o(x) I e-i2gxx. (10)

Ill. THE COSINUSOIDAL TAPERED TRANSFORMER

The problem now is to match two transmission lines of characteristic impedance of

1901 and 402 respectively by the insertion of a suitable section of nonuniform transmission
line, that is, a taper. In consonance with the above theory, it is assumed that both lines
are either infinite in extent or perfectly matched in their own characteristic impedances.

The TEM wave in the sending line propagates without reflections into the nonuniform

section and then undergoes continuous reflections for the whole of this path. Upon emerg-

ing, the wave progresses again without reflections and is finally totally absorbed in the
receiving termination. Of course, while the wave train is propagating in the uniform

sending line, it combines in a standing wave with the composite reflected wave from the
integrated finite (but small) discontinuity that appears at the input plane to the transformer.

Figure 1 shows the physical arrangement being considered together with the impedance
distribution chosen. The mathematical description of the arrangement is:
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0 (X

z ) -
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oi
XSL

Figure 1. Taper Contour and Impedance Distribution.

Zo(0) = A0 , > L,

and

Z Z()-= 01 + o-02 + Z O-o_- Z02
02 2 L' -

Note that the cosinusoidal distribution satisfies the boundary conditions, is continuously
differentiable, and physically realizable. To calculate the input reflection at x - 0 using
equation (10), proceed as follows:

d [I o =d In(_Z1+ 9 71 o
7x WX 2 2T

(02 0 )T -Z T X

+ Cos fX
2 2 L
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and upon simplification,

dIn Zo(X)*. si 011)
T n 0 +2 ) _ cos 1rX

02 01 T

Now, define the unmatched reflection coefficient (pure real due to the terminating require-

ments assumed previously) as:

go - o

=Z02 01
Po--02 

'+01

Equation (11) then becomes:
sin F2

-In Fo(x)= POr 
L. ,dX "' (1-poS -)

and upon substitution in the expression for input reflection coefficient,

. ?Tx
0if L sinT- -ij~x

p(o) f- L e dx. (12)
7L 0 (1-p cos "'-)

o L

Changing variables according to ifx/L -+ 0,

P() __ T sin 0 e - 4 0 dO, (13)

PO 2 -P Cos 0

where A0 is the free space wavelength. Expanding (13)

sin Ocos 4L 0 n sin 0sin 4L 0
p(O...)=l 7 " 0  dO-i f T os dO
Po i -poO 0 lpos

0 l 0 o

Finally, the magnitude of the normalized input reflection coefficient is:

1t sin0cOo_ 4 sin Ocos L0

-0 1 Si-OcOs dO] 2  O-f dO] 2 (14)
I?~ 2 0 ip cosO0-pcs

0

The above expression cannot be integrated analytically (in closed form) except for

certain discrete values of the parameters L/A 0 and p0. To obtain engineering design curves

based on equation (14), it is required to evaluate the above over the significant range of

parameters in the integral arguments. In this way, there evolves a family of curves giving

the normalized input reflection coefficient as a function of the electrical length L/A O

with the unmatched reflection coefficient p0 as a design parameter. The above integrals

were evaluated utilizing a numerical integration method known as the Gaussian Quadrature
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technique. The actual computations were performed on a Burrough's Datatron 205 digital
computer with the electrical length varying between 3.0 and zero, and the unmatched re-
flection coefficient varying between 1.0 and zero (0 < p < 1) both in steps of 0.1. From
this machine tabulated data, five graphs of input reflection coefficient as a function of
electrical length were constructed for five different values of mismatch as shown in
Figures 2-6 and Figures 7-11. For values of mismatch other than those covered by the
above iterations, the tabulated data easily permits interpolation to specific cases.
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Figure 2. The Magnitude of the Normalized Reflection Coefficient
versus the Ratio, Physical Length/Wavelength for p = 0.1.
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Figure 5. The Magnitude of the Normalized Reflection Coefficient
versus the Ratio, Physical Length/Wavelength for po = 0.4.
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Figure 6. The Magnitude of the Normalized Reflection Coefficient

versus the Ratio, Physical Length/Wavelength for po = 0.5.
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IV. THEORETICAL RESULTS

Close examination of the predicted performances of the cosinusoidal transformer indi-
cates some interesting characteristics. The most prominent feature, and somewhat em-
barrassing, are the curves (Figures 2-6) that show normalized reflection coefficients ex-
ceeding unity for (L/Xo) equal to zero. The normalizing parameter p0 was previously
defined as the mismatched reflection coefficient - namely, the input reflection coefficient
without a transformer. Thus, for L -* 0, X0 4 00 the input reflection coefficient p(O) is self-
normalized, p(O) = p0 , and cannot exceed unity. The fact that the computed results indi-
cate the contrary may be explained quantitatively as follows. Recalling the generalized
statement for the input reflection coefficient derived previously as equation (10):

p(O) 1 d[n o(x)je)2 Px dx,

0

it can be shown 8 that as L 0 as a limit, or alternatively as 3 - 0 (X0  00), the above

expression approaches:

p(O) In Z
2 -;0(0)

Namely, the input reflection coefficient becomes proportional to the natural logarithm of
the ratio of the end point characteristic impedances (!) regardless of the explicit functional
form of Z0 (x). Thus, the mathematically consistent normalizing parameter should be:

Zo(L )
p(o) = n

2 Po

Now, for the particular nonuniform impedance distribution - the cosinusoidal function - the
normalizing parameter assumed intuitively was:

P _o(L) - 4,0(0)

0 -- 0(L) + -70(0)

or simply the well-known reflection coefficient for a step discontinuity. Although this is
exact, its use in the linearized theory of nonuniformly distributed matching sections will
lead to the above theoretical inconsistency. The error introduced by the choice of the
consistent normalization parameter instead of the exact one has been computed elsewhere13

to be less than:
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_L9. (L) -7 ( 0) .13
24 Z0(0)

Thus, for small values of mismatched reflection coefficients, Zo(L) a Z0(0), the error i
insignificant but becomes prominent for large mismatches. The curves of Figures 2-6
vividly demonstrate this fact.

In the preceding explanation for the anomalies in the normalized reflection coefficients
for L/A O equal to zero, it was tacitly assumed that equation (10) is valid on the closed in-
terval [0, L], thus allowing an essentially mathematical argument. Although questionable
on other grounds, it is a reasonable assumption because the Burrough's Datatron 205 com-
puter which generated the theoretical data for the cosinusoidal distribution did so gullibly
obeying its program with the same inherent assumption. Now, allowing (L/Xo) -# 0 in the
physical sense means that the period of the cosinusoidal variation is decreasing or that
the transformer is literally shrinking up.

The physical significance of this contraction implies an increasingly more violent
taper, the slope of which is ipproaching that of a stepped discontinuity. It is obvious
that in such a case the magnitude of the reflection coefficient in the cosinusoidal section
will become appreciable, thus violating the linearizing condition on the Riccati differen-
tial equation. In other words, equation (10) represents the solution to the linearized
Riccati equation subject to the condition requiring Ip(x) 2 < < 1 throughout the nonuniform
section. Consequently, the normalized reflection coefficient curves in Figures 2-6 (and
Figures 7-11) are in serious doubt when (L/Xo) 0 0. However, from the point of view of
engineering high quality impedance matching transformers, that region of these design
curves is mainly of academic interest.

The discrepancies inherent in Figures 2-6 are pointed out and discussed mainly for
the purposes of signifying a possible strategic pitfall in the linearization process of the
Riccati equation and the erroneous engineering value in the use of the subsequent results.
Consequently, Figures 2-6 were corrected with respec. to the mathematically consistent
normalization parameter and are given in Figures 7-11. The most important aspect of
these theoretical data for the cosinusoidal transition is observed in the design curves of
Figures 7-11. A critical examination of these predicted results in comparison to the pre-
dictions of other distributions reported in the literature indicates that the cosinusoidal
variation offers significant improvement in over-all performance. In the Dolph-Tchebycheff
tapered transition 14 for a 50-75 ohm impedance mismatch, it is observed that side lobes
of the bandpass curves are of equal height with a normalized reflection coefficient of
approximately 0.0 537.

The minimums occur at approximately 0.637 L/X o , 0.955 L/A o, 1.364 L/Ao 1.817
LIAO? etc. A comparison of these data with Figure 8 of this report shows that the Dolph-
Tchebycheff first side lobe is approximately 28 percent less than the cosinusoidal first
lobe, but the cosinusoidal second lobe is approximately 44 percent less than the Dolph-
Tchebycheff case. Thus, for this particular mismatch (50-75 f2), the cosinusoidal
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distribution offers considerable improvement of ripple in the passband providing that the

frequency and length are chosen such that (L/,ko) > 1.125 is always satisfied.

The exponential taper for the same mismatch conditions, 50-75 Q exhibits14 approxi-

mate peaks in the normalized reflection coefficient side lobes as follows: first, - 0.214,
second - 0.125, third - 0.089, etc. Comparison of these data with Figure 8 indicates much
superior performance for the cosinusoidal distribution. In fact, the latter does not exhibit

the highest exponential peak until L/ O is about 0.575, while the exponential distribution

gives this value for L/k o of approximately 0.682. In other words, if a normalized reflection
coefficient of 0.214 is the acceptable maximum, then the cosirnusoidal-transformers offer an
approximately 16 percent greater bandwidth over an exponential transformer of the same

physical length, or alternately for the same bandwidths, a 16 percent reduction in pysical

size.

The hyperbolic taper 15 for the same mismatched conditions exhibits no side lobes, but
rather a monotonically decreasing normalized reflection coefficient for increasing L/A O.
The cosinusoidal transformer when compared to this distribution is drastically superior.
For example, if a normalized reflection coefficient of 0.1 is the acceptable maximum, then

Figure 8 indicates that the cosinusoidal transformer will satisfy the requirement with

L/A 0 > 0.67. The hyperbolic transformer, on the other hand, demands an L/A 0 equal to
or in excess of about 1.41. In other words, for the same lengths of line, the cosinusoidal

transformer offers approximately a 53 percent improvement in acceptable bandwidth over
the hyperbolic design. Alternatively, for a common fixed bandwidth, the cosinusoidal de-
sign will satisfy the requirements in roughly half the physical size of the hyperbolic trans-

former.

V. EXPERIMENTAL ANALYSIS

To authenticate the theoretical results embodied in Figures 7-11, an experimental

demonstration was conceived and designed to corroborate the theoretical predictions.

Since one author15 presented a comparison of theoretical performance of several kinds of
taper distributions for a 50-150 ohm mismatch, it was decided to use this mismatch as

the comparative criterion. Figure 12 shows the pertinent theoretical data for the hyper-
bolic, exponential, and Bessel sections together with the cosinusoidal performance from

Figure 11 for this particular case. Again, the cosinusoidal transformer seems to be the
superior one.

The large side lobes in the exponential and Bessel sections compared to those of the
cosinusoidal section are their main drawbacks, while the slowly changing slope of the
hyperbolic section (at the expense of bandwidth or physical size) is its main drawback.

The test vehicle objective will then be to design and experimentally test a transformer
for a mismatch condition of 0 .5, which corresponds to a 50-150 ohm transition. In this
way, a direct comparison with Figure 11 (and 12) may be made. Furthermore, the available

microwave instrumentation in the nominal 50 ohm characteristic impedance lends itself
readily to the uniform sending end of the transformer.

The actual design of the transformer proceeds quite easily. From the significant range

20



1.0 _ _ _ _

0.9

0.7 _ _ _ _

0.I-

0

0.3.5

0.21



of the parameter L/A., the physical length of the transformer is fixed so as to exhibit a
bandwidth that encompasses the essential highlights of Figure 11. For the case treated
this length comes out to be about 23 cm. With the end point characteristic impedances
specified as 5002 and 150l, respectively, the appropriate cosinusoidal distribution be-

comes:
Zo(X ) _ Z01 + Z 0 01 - 0os+ ~cos r.

2 2 L
or

70W) = 100 - 50 cos fn.x (x in cm).
23

To realize this distribution, the inner conductor of a coaxial section is machine tapered

to give a variable radius satisfying 0 = 60 In o , where R0 is the inner radius of the

outer conductor and ri the outer radius of the inner conductor. Thus, the physical profile
of the variation in the inner conductor obeys:

ri(x) = Ro exp [- - (100 - 50 cos Y )] (Xcn.

The choice of line size is dictated by the availability of test instrumentation in vari-
ous line sizes, and also by what is physically practical at the receiving or terminating

end of the transformer. For example, the choice of standard 3/8 inch coaxial line for the
sending end would result in a receiving coaxial l;ne, whose inner conductor would be pro-

hibitively small from the mechanical tolerance and fragility aspects. Based on the above
considerations, it was decided to use standard 7/8 inch rigid coaxial line, which results
in a receiving line whose inner conductor is slightly less than 1/8 inch in diameter. The
finished unit with the outer conductor removed is shown in Figure 13a.

Two sections were constructed with male and female end connectors using silver
plated solid brass throughout. The tapered profiles were realized from standard bar
stock of 3/8 inch diameter by first machine cutting a "staircase" distribution which rep-

resents an outside approximation to the taper profile. Figure 13b shows the engineering
drawing used to determine the steps' height and length. At the indicated stations the

staircase fit is exact within the appropriate tolerances. With these tolerances satisfied
at the beginning and end of each step throughout the transformer, the individual step

corners were then finished down by hand filing. Finally, a smooth gradual transition was

effected by hand rubbing with #400 emery paper followed by silver electroplating and pol-
ishing.

Now, in the derivation of the input reflection coefficient for this transformer, it will
be recalled that the receiving line must be terminated in a reflectionless load. Unfortun-
ately, broadband (500 mc - 4 kmc) 150 ohm terminations in this unconventional line size

are not available without the expenditure of considerable design effort. Nevertheless, a

modest amount of effort was expended in an attempt to realize a suitable broadband (100
mc/s to 4 kmc/s) termination. The technique involves the use of a thin conducting film
placed at a quarter wavelength from the metallic surface of an ideal short circuit in the
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- 150 ohm transmission line. Consider a thin

coaxial film of a good metallic conductor with
a large shunt conductance and a negligible

shunt capacitance (that is, a > > co e), separa-

ted by a quarter wavelength from a highly con-

ducting sliding piston. This 150 ohm sliding

short will provide the tunability of the termina-

tion.
i-. For a quarter wavelength separation the film

is at a point of maximum electric field and max-

imum attenuation. In fact, the combination of

film and short will be a perfectly matched16 load

provided that (ad)2 < < 1 and ((3d) 2 < < 1, where
a and /3 are the attenuation and phase constants,

respectively, of the metal film and d the thick-

ness. Now, for a good conductor, the attenua-

4 tion and phase factors are both equal to the re-

ciprocal skin depth and ri/ 4 radians out of phase.

For these conditions the surface resistivity of
the film is calculated to be equal to the charac-

teristic impedance of the 150 ohm line with a

film thickness much less than the minimal skin

depth expected (at the high end of the bandwidth).
With the above design criteria formulated, a

search of commercial manufacturers of microwave

resistive films revealed one whose product sat-
isfied the specifications. The company is the

Filmohm Corporation of 48 West 25th Street,

New York, New York, manufacturing two forms
of acceptable film material. Both types are avail-
able in the requisite 150 ohm per square resis-

tivity using a michrome deposition of 1.27 micron
thickness on high temperature fiberglass in one

Nform, and an artificial mica in the other form.
Both types use a mica superstratum to complete

a scratch-free sandwiched film construction.
Samples oi these materials were obtained,

die cut, and placed in a two-inch section of 7/8
inch coaxial 150 ohm transmission line designed

Figure 13a. Photograph of the Inner Con- to serve as a mount for the film resistor. The
ductor of the Cosinusoidal Transformer. mount was constructed so as to permit a firm
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metal to film pressure fit both at the inner conductor and outer conductor with conductive

silver paint (Dupont #4548 or #5584) forming an intermediate layer between coaxial metal

and film resistor. Thus, the mount is constructed to guarantee electrical continuity and,
at the same time, to provide a rigid mechanical support for the somewhat fragile films.

Finally, a sliding short circuit in the 150 ohm transmission line was designed to mate

with the output end of the transformer in conjunction with the thin film resistor mount,
thereby completing the tunable 150 ohm termination.

This load configuration terminating the output port of the transformer was tested at

the midband frequency to determine, at least qualitatively, the success of the load de-

sign. In other words, for a quarter wavelength setting of the short circuit, the termination

should be matched to the output end of the transformer, and the reflection coefficient (and

VSWR) measured in the send line should correlate with the predicted reflection coefficient.

The results were completely unsatisfactory. No change in VSWR was found for any posi-
tion of the sliding short. In fact, further tests indicated that the shifts in VSWR minimum

in the slotted line were a function of the short setting only and independent of the pres-

ence of the film. This was confirmed by actual removal of the film mount section. A lack

of d-c continuity between the coaxial metal and film resistor was suspected and later con-

firmed by microscopic inspection of the film resistor.
The substratum for the vaporized michrome metal is a form of artificial mica with a

superstratum of the same mica. Clearly, this sandwich-type construction prohibits a sil-

ver paint electrical contact. Although this conclusion is obvious now, it was not at the

outset of the termination design. Further effort to engineer this tunable load was conse-
quently abandoned in favor of a measurement technique that does not require a matched

load. Specifically, a measurement scheme was used that employs lossless reactances

only.

The method is based on a graphical determination of the scattering matrix of a two-

port junction and is due to the research of Deschamps17 and the engineering by Storer,
et al. 8 Briefly, the technique is as follows: given; a lossless reciprocal two-port net-
work with unequal port characteristic (or wave) impedances and a variable reactance ter-

minating each of the ports in succession, it is possible uniquely to determine the complex

scattering matrix of the junction by successive measurements on the excited port. Obvi-

ously, such a complete description of the transformer would more than suffice. It is also
clear that the coaxial cosinusoidal transformer in question is indeed reciprocal and loss-

less and, as such, meets the Deschamps criteria.

The variable reactance is simply a sliding short circuit realizing reactances from

open circuit to short circuit with one complete quarter wavelength slide. Furthermore, the

scattering parameter of primary interest is S11(W) which by definition is the reflection co-
efficient at the input plane of reference of the transformer when the output port is terminated

in its characteristic impedance. Thus, the determination of S11(W') according to the

Deschamps method will suffice. The experimental setup to do this is as shown in Figure

14, where the 150 ohm sliding short circuit was custom-designed in-house and described
previously. The actual measurements performed consisted of determining the complex
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Figure 14. Experimental Block Diagram for the Measurement
of the Transformer Scattering Matrix.

input reflection coefficient for four settings of the sliding short circuit spaced about
equally over a quarter wavelength. Conventional measurement procedures were employed
to determine these reflection coefficients, the results of which were graphically analyzed

in accordance with the Deschamps technique.
For the given length of transformer (23 cm) in conjunction with the unmatched 50-150

ohm transition, the theoretical data of Figure 11 were recalculated accordingly, with VSVIR
versus frequency, and is as shown in Figure 15. The experimental results after graphical
analysis are indicated on the same figure by the crosses. As can be readily observed,

the correlation is excellent considering the microwave instrumentation employed to deter-
mine the input reflection coefficients of the transformer-short circuit combination for the
various settings of the adjustable short.

The measurement of the large input standing wave ratios encountered across the
whole range of the frequencies of interest requires a highly sensitive bolometer amplifier-

detector and a knowledge of the detector response law. The first requirement stems from
the need to detect the small signal proportional to the standing wave minimum amplitude
in the presence of considerable amplifier noise, and the second requirement dictating the
value of the proportionality constant involved. The sensitivity of the instrumentation

used was increased considerably by a traveling-wave-tube amplifier between the r-f source

and the slotted section. The response curve of the detector was assumed to be square law,
that is, the detected output in the region of a standing wave minimum is a quadratic
function of probe travel. With this assumption, it is possible to determine the VSWR by
examining the region about the minimum. If the distance between points on either side of
a minimum with power, levels three decibels above the minimum can be determined, and if
the distance between two adjacent minima is known, the VSWR can be obtained from the

relationship: 
19
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(VSWR) 2 =1+ 1 0.2

sin 2 (rrAX)
X
0

where AX is the distance between the half power points on either side of the minimum and

X0 is the free space wavelength.
For the large input standing wave ratios being considered (in excess of 20), the above

approximation is shown by Ginston to be less than one percent in error for computation.

The experimental error in the actual measurement of AX for the determination of VSWR mag-
nitude (and the determination of nodal shifts for VSWR phase) is dependent on, among
other factors, the detector-amplifier sensitivity, the mechanical precision of the probe

carriage, and the adjustable short, frequency instability in the r-f signal source and, not
the least of all, the experimentalists' patience and fortitude, Nevertheless, the total con-

tribution of measurement type errors is at least qualitatively available by inspection of the
graphical analysis of the measured data. This valuable feature of the Deschamps method

is essentially a check on the consistency and accuracy of the data used to plot the locus
of the input reflection coefficient (of the combination) in the complex plane. Now, this

locus is used in conjunction with the locus of the reflection coefficient of the adjustable

short alone to geometrically determine the complex value of the S11(W) parameter of the
transformer scattering matrix.

Now, in the various graphical constructions performed, inconsistent data are immedi-
ately recognized and may be discarded promptly or remeasured. Furthermore, any system-

atic or random errors in the data exhibit themselves in the so-called "crossover region"
of the graphical data analysis. The area of this region (in general a polygon) in relation

to the area of the entire complex plane used is a measure of the total accumulative experi-
mental error. For the graphical plots and geometrical constructions that led to the experi-

mental results of Figure 15, the ratio of areas of "crossover region" and complex plane
was approximately one part in 3500. Theoretically (or ideally), this ratio is zero since the
"crossover region" degenerates into a point. Finally, although no over-all quantitative

experimental accuracy can be calculated, the reproducibility of the measured results by
the Deschamps technique was well within three percent. Consequently, for the above

reasons, the experimental accuracy is considered excellent.
At the higher frequency ranges where the predicted VSWR's are almost unity, the in-

sertion VSWR's of the test instrumentation itself become the more prominent factors. That
is to say, the VSWR of the transformer in comparison with the VSWR of the available good

commercial connectors is probably smaller and thus unmeasurable with the instrumentation

and techniques employed. At any rate, the data shown for the higher frequencies represent
the composite VSWR due to significant contributions from the slotted line, connectors,
transformer, and a slightly misfitting sliding short circuit. Thus, the theoretical perform-
ance appears to be strongly validated by the experimental results. If the experiment agrees
with the theory for such a large mismatch p0 = 0.5, then, in view of the linearizing
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restriction of the theory, lp(x)l 2 < < 1, the correlation between theory and experiment for
smaller mismatches is assured. On this basis, then, the claims made previously would

also seem to be on firm ground.

VI. CONCLUSION

A nonuniform section of coaxial transmission line has been presented. In particular,

the distribution studied is expressible as a characteristic impedance with a half-period co-

sinusoidal function in the variable x, the direction of the TEM mode propagation. From

basic considerations of the line voltage and current differential equations, an expression

for the input reflection coefficient for such a nonuniform line was developed. This inte-
gral statement was evaluated for various (useful) ranges in design parameters using the

Burrough's Datatron 205 computer. The resultant predicted performance of the cosinusoi-
dal transformer indicated, in comparison to "conventional" tapers, improved over-all per-

formance and, in some cases, outright superior performance.

The theoretical performance of the transformer was compared experimentally in a mis-
match condition (p0 = 0.5) that stretched theoretical assumptions to their limit. In this,

the most severe test, the correlation between theory and experiment is excellent. For less

drastic mismatch conditions, the correlation can only be better. Thus, a microwave net-
work transformation technique is theoretically and experimentally shown to exhibit improve-

ments in maximum bandwidth and minimum physical length over conventional coaxial tapers.
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APPENDIX

The equation to be solved is:

d - 2 yp + -1 -L in -(x) =0; (A-I)
dx 2 dx

let
p(x) = A exp [2 j y (6) del + u(x) exp [2 fy(a del, (A-2)

x0  x0

where A is a constant and x0 a reference point on the closed interval 10, LI. Differenti-

ating (A-2). xdu2f y(e) de
dp = 2Ay(x) exp [2 JN'cO del + 2 uyexp [2 ly () del + du e Xo
dx X0 xd0 e (A-3)

Upon substitution of (A-2) and (A-3) in equation (A-I) and after simplification, we have
the differential equation for u(x):

du 12X
duexp L[2 fy() del] + d (In 90) = 0 .  (A-4)

X02 dx(n
Introducing the dummy variable t foL x in the above and solving, one arrives at:

Xdt
u(x) - - In Z0(t)] exp [ -2 f y(ode] dt. (A-S)

0 
to

Thus, the solution to (A-i) aside from the constant A, is:

x I"dtp(x)= exp [2 fy(e) del IA -1 d [In i!o(t) I exp [-2 fy(e1del dt .

0 x0 to (A-6)

To evaluate the constant A, set x = L. Thus,

L I!Ld t
p(L) = exp [2fy(e del A - [ [in "Zo(t)I exp [-2 fy(e)d] drl, (A-7)

or
_L L t

A = p(L) exp [-2 fy(e del + d [in Fo(t)I exp [- 2 f y() df I dt. (A-8)
x0  0  t o

Substituting this expression into (A-6), we arrive at the general solution:

L
p(x) = p(L) exp [-2 f y(e) del +

x
1 ex t (A-9)lI
T x o x [  In -;o(t) I exp [ -2 f y( e ) df I dt 1. (A-9)

2 X0 dt
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